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Abstract. This paper presents the potential of non-linear and linear versions of an observation operator for simulating polari-
metric variables observed by weather radars. These variables, deduced from the horizontally and vertically polarised backscat-
tered radiations, give information about the shape, the phase and the distributions of hydrometeors. Different studies in obser-
vation space are presented, as a first step toward their inclusion in a variational data assimilation context, which is not treated
here. Input variables are prognostic variables forecasted by the AROME-France Numerical Weather Prediction (NWP) model
at convective scale, including liquid and solid hydrometeor contents. A non-linear observation operator, based on the T-matrix
method, allows to simulate the horizontal and the vertical reflectivities (Z i and Zyv), the differential reflectivity Zpg, the
specific differential phase Kpp and the copolar correlation coefficient pry. To assess the uncertainty of such simulations,
perturbations have been applied on input parameters of the operator, such as dielectric constant, shape and orientation of the
scatterers. Statistics of innovations, defined by the difference between simulated and observed values, are then performed. After
some specific filtering procedures, shapes close to Gaussian have been found for both reflectivities and for Zpg, contrarily to
Kpp and pgy. A linearised version of this observation operator has been obtained by its Jacobian matrix estimated with the fi-
nite difference method. This step allows to study the sensitivity of polarimetric variables to hydrometeor content perturbations,
in the model geometry as well as in the radar one. The polarimetric variables Z gz and Zpgr appear to be good candidates for
hydrometeor initialisation, while K pp seems to be useful only for rain contents. Due to the weak sensitivity of py, its use in

data assimilation is expected to be very challenging.

1 Introduction

For a couple of decades, convective scale Numerical Weather Prediction (NWP) models have been developed to forecast
mesoscale meteorological phenomena such as storms, wind gusts and fog, which can represent important socio-economic
threats. Nowadays, most of operational convective scale NWP models have fine, km scale, horizontal resolutions (see review
by Gustafsson et al. (2018)). In the present study, the AROME-France model from Météo France (Seity et al., 2011) is used with
aresolution of 1.3 km (Brousseau et al., 2016). This high resolution allows, in addition to a fully non-hydrostratic compressible
set of equations, an explicit representation of the deep moist convection and related dynamical parameters. As such models

are run over a specific geographical region, initial conditions and lateral boundary conditions are required. Ducrocq et al.
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(2002) showed that accurate initial conditions can be more important than lateral boundaries to obtain skillful forecasts with
such Limited Area Models (LAMs). Several methods exist to provide initial conditions but, as explained by Gustafsson et al.
(2018), better performances are obtained when a convective scale data assimilation step is considered, compared to an initial
state downscaled from a global model. In addition to observations that are representative of larger scales, observations at fine
spatial resolutions and high sample frequencies are required in order to get an accurate representation of the dynamics occuring
at these small scales (Benjamin et al., 2016; Brousseau et al., 2016). It is the case for data produced by weather radars: with a
kilometric or finer resolution and few minutes temporal sampling, they are able to provide information about the intensity of
precipitating systems through the horizontal reflectivity and about their dynamics from Doppler radial winds.

The dual-polarization radar technology allows to go further in the description of precipitating systems. Seliga and Bringi
(1976) were ones of the first to investigate the capabilities of polatrimetric radars for a better understanding and representa-
tion of precipitating systems. Since then, numerous studies have shown the interest of Dual POLarized (DPOL) variables to
improve storm description and related processes. In a first paper, Kumjian (2013a) firstly describes the DPOL variables, their
characteristics and ranges of values while, in a second one (Kumjian, 2013b), he explains their usefulness for the detection of
meteorological phenomena, such as hail, supercells or bright bands. DPOL variables can also be used to control the radar data
quality as, for example, the determination of echo type, using a combination of several polarimetric variables. Gourley et al.
(2007) use a fuzzy logic algorithm to distinguish meteorological echoes from non-meteorological ones, which is necessary for
improving Quantitative Precipitation Estimation (QPE). Detection of the major hydrometeor type in meteorological echoes can
also be done with fuzzy logic algorithms, as proposed by Al-Sakka et al. (2013) for example. Another application of DPOL
variables, for QPE improvements, is to use new relationships between Zyr, DPOL variables and rain rate, as in the "Joint
polarization experiment” (Ryzhkov et al., 2005).

Nowadays however, only the horizontal reflectivity and the Doppler wind are operationally exploited in the retrieval of
initial conditions of NWP models. From a Data Assimilation (DA hereafter) point of view, the challenge is to extract useful
information about the main control variables from Zp g, which is an indirect observation of model variables. At Météo-
France, a two-step method is operationally performed in the AROME-France model (Wattrelot et al., 2014): pseudo-profiles
of relative humidity are firstly retrieved from Zp g using a 1D Bayesian inversion (following Caumont et al. (2010)), and
then are assimilated as pseudo-atmospheric soundings in a three-dimentional Variational (3DVar) system. In this approach,
the complex linearization of the reflectivity observation operator is avoided. However, the prognostic hydrometeor variables
are not initialized and they evolve with respect to the analyzed thermodynamical conditions at the beginning of the model
integration. When coupled with the assimilation of Doppler winds, storm dynamics and precipitation forecasts are clearly
improved, especially when low level wind convergence is sampled (Montmerle and Faccani, 2009). Such procedure is also
used operationally at JMA (Ikuta and Honda, 2011) and by some countries of the HIRLAM community (Ridal and Dahlbom,
2017). Other NWP models (e.g UKV at the Met-Office or HRRR at NOAA) make use of Zpp (or radar-based precipitation
rate analysis in the case of the UKV) through Latent Heat Nudging procedures (see again Gustafsson et al. (2018) for details).
A range of studies have been also undertaken to assimilate Doppler wind and Z ;57 using methods based on Ensemble Kalman

Filter (EnKF) (e.g Tong and Xue (2005), Dowell et al. (2011) or Bick et al. (2016)), mostly for case studies. These methods
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avoid the linearization of observation operators and can quite straightforwardly consider hydrometeors in the control variable,
but they are particularly prone to sampling noise.

In this paper, preliminary work is presented in order to prepare the assimilation of DPOL variables in a convective scale
variational DA system. Such system is based on the minimization of a cost function, which is composed of two terms defining
distances (i) between the model state and a background and (ii) between the model state in the observation space and the
observations. The second term requires non-linear (NL hereafter) observation operators in order to retrieve the model equivalent
of every observation at their locations. Statistics between observed and simulated values (called innovations) are used at this
stage to quantify the performance of the model in this particular space and to perform quality controls in order to produce
innovation distributions that are close to a Gaussian shape, such conditions leading to optimal variational DA results. In this
study, the NL observation operator described by Augros et al. (2015) is used to simulate DPOL variables from the AROME-
France model. This operator is based on the T-matrix approach, which describes scattering by particles (Waterman, 1965). This
approach has been used in several studies. For instance, in Bringi et al. (1986), it allows to study the melting of graupels by
simulating the differential reflectivity Zpg. It is also used in the observation operator proposed by Jung et al. (2008), with a
one moment bulk microphysical scheme, to simulate all DPOL variables. A more complex observation operator has then been
proposed by Ryzhkov et al. (2011) with a spectral microphysical scheme. Even though it leads to more physically coherent
results, its computational cost is not yet compatible with operational NWP requirements.

When error Gaussianity and operator linearity are respected, the cost function of a variational DA system is close to a
quadratic function for which the minimum can be easily obtained by e.g the method of least squares. The estimation of its
gradient, which needs linearized versions of the observation operators, is then required. For operators related to precipitation,
this is not straightforward as cloud microphysical processes are often highly non-linear due to the presence of on/off switches
(Sun, 2005). Furthermore, Errico et al. (2007) pointed out that these non-linearities can severely affect the analysis. Such
difficulties explain why the 1D+3D Var approach has been initially preferred in AROME-France as discused above. In their
first attempt to assimilate Zgp in a 4D Var, Sun and Crook (1997) found indeed better results when simply retrieving the
rain mixing ratio from an empirical relationship with Zzf; instead of directly assimilating Zz iy by using a NL observation
operator. This approach based on empirical relationships has been more recently extended to solid precipitating species by Gao
and Stensrud (2011). Other attempts of direct assimilation of Zy i with encouraging results have been made in 3D-Var (Wang
et al., 2013b) and 4D-Var (Wang et al. (2013a); Sun and Wang (2013)). Nevertheless, no operational applications have been
performed yet, particularly because only warm microphysical processes are considered. In this paper, before trying to linearize
the highly NL DPOL observation operator, its Jacobians have been computed in order to study the sensitivity of simulated
polarimetric variables to hydrometeor content perturbations.

The main goal of this paper is to study an observation operator of DPOL variables in order to determine its properties
and suitability for DA, especially for hydrometeor contents initialisation in the variational context of the AROME-France
convective scale NWP model. No assimilations are thus performed yet and only results in the observation space are discussed
at this point. The behaviour of the operators presented in this paper in a variational DA system will be the focus of a future

paper. Section 2 firstly describes the NL observation operator, a quantification of its errors, and examples of DPOL variables
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simulation for different meteorological situations simulated by AROME-France. In section 3, innovation statistics are discussed
and used to perform quality controls on polarimetric observations. Finally, section 4 focuses on the DPOL observation operator
Jacobians to determine the validity of the linearity hypothesis, and to quantify the sensitivity of DPOL variables to the various

simulated hydrometeor contents. Conclusions and perspectives from this study are given in section 5.

2 A non-linear polarimetric radar observation operator (HDPOL)
2.1 HDPOL description
2.1.1 Generalities

The Hppor observation operator has been developed by Augros et al. (2015), and only the main characteristics are
summarized here. It uses the T-Matrix method (Mishchenko and Travis, 1994) to compute the backscattering coefficients
according to frequency, temperature and type of hydrometeors. The microphysical scheme used to predict hydrometeor contents
is the one from the AROME model. This scheme, called ICE3, is a one moment microphysical scheme with water vapour and
five hydrometeors species: cloud droplets, rain, snow, pristine ice and graupel (Caniaux et al., 1994; Pinty and Jabouille, 1998).
In the present study, only the last four have been used for the DPOL simulations, in addition to a melting species which has
the characteristics of melting graupel. This melting species represents the sum of the three solid hydrometeor contents when
temperature is above 0°C. In this microphysical scheme, the Particle Size Distribution (PSD) of each hydrometeor is expressed
as the product between the total number concentration Ny and generalized Gamma distribution. The slope parameter used to
characterize the PSD shapes depends upon the hydrometeor content M (expressed in kg.m ~3), this last being the ratio between
the hydrometeor content (express in kg.kg ') and the density of an air parcel. The parameters describing the hydrometeor PSDs
are given in Table 1 of Caumont et al. (2006).

Two other parameters are required for the backscattering coefficient computation: the hydrometeor shape and the dielectric
constant. The latter, which describes how a material reacts to the application of electrical field, is simulated by the Debye
model for raindrops (Caumont et al., 2006), and by the Maxwell-Garnet mixing formula for ice particles (Ryzhkov et al.,
2011). This last formula allows to consider solid hydrometeors as ice particules with air inclusions. For melting hydrometeor
species, dielectric constant is computed with a weighted Maxwell-Garnet mixing formula (Matrosov, 2008), which permits
to consider melting species as liquid water inclusions in ice and as ice inclusions in liquid water, depending upon liquid
water and graupel fractions. For hydrometeor diameters lower than 0.5 mm, all particles are considered as sphericals (axis
ratio of 1). For larger diameters, the axis ratios depend upon the hydrometeor types. Rain drops are described as spheroids,
with an aspect ratio depending on diameter, in order to account for the flattening which is proportional to their size (Brandes
et al., 2002). Concerning snow particles, a spheroid shape is also assumed with axis ratios linearly decreasing from 1 to 0.75
when the particle diameter increases from 0.5 mm to 8 mm. For higher diameters, the minimum value of 0.75 is kept. Same

characteristics are used for graupel and for melting hydrometeor species, but with axis ratios linearly decreasing from 1 to 0.85.
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Finally, pristine ice is simulated as spherical. All these parameters have been proposed by Augros et al. (2015) as a result of

sensitivity studies.
2.1.2 Simulated DPOL variables

Once the hydrometeors characteristics are defined, the T-matrix method is used to compute the back-scattering coefficients for
different values of particle diameters, radar elevations, temperatures and water contents (as listed in Table 1 of Augros et al.
(2015)). These coefficients are then integrated over diameters and stored in look-up tables to speed up computations. They are

then used for the computation of the four DPOL variables of interest from the following equations:

D"’Lam
T S
Zun,vv = 10log(Zpn, Zvy) = 10log 1018m Z / Sk, vy, (D)]PNi(D)dD (0
W i=1p,

min

where Zr ' and Zyy represent respectively the horizontal and vertical reflectivities (in dBZ), Z, n(Zyy) the horizontal

6. m=3, \ the wavelength (in m), | K, \2 the dielectric factor, function of the

reflectivity (vertical reflectivity) expressed in mm
dielectric constant, N; (D) the number of particles with a diameter D for the hydrometeor type i and SY% H,» S\b/vi the horizontal

and vertical backscattering coefficients respectively, b exponent standing for "backward".

Znh
Zpr = 10log( Zh’ ) 2

Zpr being the differential reflectivity (in dB). This variable brings information on target aspect ratio and phase. It can be

6 m~3. For

explained by its dependence upon the ratio between the horizontal and vertical reflectivity when expressed in mm
spherical hydrometeors (i.e. with equivalent horizontal and vertical cross sections), Zpp is equal to 0 dB. This variable will be
positive (negative) when the hydrometeor horizontal dimension is larger (smaller) than the vertical one. Zpg is very sensitive
to the hydrometeor dielectric factor: liquid hydrometeors will have a higher Zp g value than the solid ones with similar shape
and size distribution.

pHv expresses the copolar correlation coefficient:

n Dmaa:
|2 | Shu,(D)x Sy, (D)Ni(D)dD|
1=1Dypin
PHV = —— T 3)
;Df \S?IH,.,(D)PM(D)CIDX;DI 1SV, (D)[2Ni(D)dD

This quantity gives information on homogeneity. When a large variety of hydrometeor sizes, shapes, phases and orientations

are represented in the observed volume, pgry values will be close to 0.

!'The reader should notice that "horizontal reflectivity" (Z g r) in this paper relates to the horizontal equivalent reflectivity.
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The specific differential phase Kpp (in °.km™1), is defined as:

Dmax
180
Kpp=10°A—Y" / R(STr g, — St )Ni(D)dD (4)
" =D in

where R(S IJ; H, SX};Vi ) expresses the difference between the real part of the forward horizontal and vertical scattering coef-
ficients (the f exponent meaning "forward"). This polarimetric variable expresses the phase difference between the horizontal
and vertical polarized electromagnetic (EM) wave between a specific distance. In the case of spherical hydrometeors, the same
amount of matter will be crossed by these two waves. Therefore, no phase difference will be observed. For non spherical parti-
cles, the horizontally and vertically polarized EM wave will have to cross different amounts of matter, which will cause a phase

difference. Because this variable only depends upon the phase difference and not upon the cross-section, it is not affected by

attenuation, nor by geographical masks.
2.2 Tllustration on a case study

To assess qualitatively the ability of Hppor, to simulate DPOL variables, PPIs (Plan Position Indicators) of the different

DPOL variables are compared for one particular meteorological case. On the 10t"

of October 2018, an important convective
event strokes the South of France, mainly because of a strong south-westerly flow that took place off the coast over the
Mediterranean sea. It represented an important source of humidity and, because of low-level convergence due to orography,
strong precipitation occurred over the Var, Bouches-du-Rhone and Gard departments. Such kind of meteorological events
are quite common over the Mediterranean region. For instance, Llasat et al. (2010) report that, between 1990 and 2006, 185
flash-flood events occured around the Mediterranean basin, and about half of them happened during the autumn season. The
meteorological event which took place on the 10th of October 2018, has produced more than 100 mm of rain in 24 h over a
large area of the Var department, and locally more than 150 mm, with flash floods causing two casualties. In addition to the

heavy precipitation, strong wind gusts up to 100 km/h have been observed. Meteorological fields from a 1 h AROME-France

forecast, valid at 14 UTC, have been used as input to Hppor-
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Figure 1. Observed (left) and simulated (right) Zg g (a and b), Zpr (c and d), Kpp (e and f) and prv (g and h) for the Collobrieres radar
the 2018-10-10 at 14 UTC (elevation: 2.2°).
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Fig. 1 represents the observed and the simulated DPOL variables during this event, using the S-Band Collobrieres radar
located along the French Mediterranean coast (indicated by a dark cross), for an elevation angle of 2.2°. The simulated hy-
drometeor mixing ratios from the 1Th AROME-France forecast have been interpolated on the radar beam for the same elevation
angle (Fig. 2). All observations have been filtered with the methodology described in section 3.1. This particular radar is part
of the French radar network ARAMIS (Tabary, 2007), which, in 2019, is composed of 31 weather radars, 28 having a DPOL

capacity.
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Figure 2. Hydrometeor mixing ratios from a 1h AROME-France forecast valid the 2018-10-10 at 14 UTC for (a) rain, (b) snow, (c) graupel

and (d) pristine ice.

The Zp i observations show a narrow band of very high values over the sea near the radar, reaching locally more than
50 dBZ. An area of medium to high values (20 to 40 dBZ) is located inland in the north-west quadrant, while an extended
stratiform area of Zy y values above 15 dBZ is located more offshore. When examining the simulations, high values of Zp py
with comparable values are also present close to the radar, however covering a wider area than in the observations. The inland
area of Zyryr is well represented, but with lower values than observed. Finally, for the southern part of the precipitating system

far from the radar, Zj is clearly underestimated. Since solid hydrometeors are present in this area, as displayed in Fig. 2,
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either AROME-France did not simulated sufficient amount of it, or such underestimation comes from the observation operator.
A combination of these two hypotheses could also explain these differences.

In agreement with areas of large Zy; iy values, observed Zpg can reach locally between 2.0 to 2.8 dB (Fig. 1c). Elsewhere,
values are predominantly lower than 1 dB, with many small spots of higher values. Considering the simulations (Fig. 1d), the
range of values are close to the observations in the area where simulated rain prevails. Nevertheless, as for simulated Z 7 and
contrarily to what is observed, the range of values decreases with distance, which is typical of an evolution from convective
liquid precipitation to more spherical solid hydrometeors. As solid hydrometeors are simulated in those areas (see again Fig. 2),
comparison to observations clearly reflects the inability of the ICE3 microphysical parameterisation to represent the observed
variability of hydrometeors, particularly in the ice phase.

The observed and simulated specific differential phase K p p are compared in Figs. le,f. In both cases, values up to 1.5°.km !
are locally displayed in the main convective area close to the radar, which is characterized by intense rainfall. As for Zppr, the
area of largest simulated Z ;7 values is associated with significant K p p values. Elsewhere however, K pp values are close to
zero. In general, these high amounts of null or close to zero values for Kpp or Zpg are associated with locations where the
simulated Z; g7 is lower than 20 dBZ, corresponding to small amounts of hydrometeor contents simulated by AROME-France.

Here, only co-polar correlation coefficient values higher than 0.85 are displayed, lower ones being associated with non-
meteorological echoes. Concerning the observations (Fig. 1g), the pyy values are very close to 1 in the area of large Zr s
values, mostly composed of liquid hydrometeors. Then, a ring of values between 0.9 and 0.98 is displayed, denoting the solid
hydrometeors melting within the so-called bright band. Far from the radar, pyy values increase up to 1, indicating more
homogeneous solid hydrometeor distributions. In the simulation (Fig. 1h), most of the areas where Z g is above 20 dBZ are
associated with a pgy close to 1, corresponding to very homogeneous scenes. Furthermore and contrarily to what has been
observed, the melting layer is not visible in the simulation. Far from the radar and in regions where the hydrometeor contents
are low, the simulated ppy decreases significantly, reaching values less than 0.1 (not shown). It corresponds to areas where
snow and ice contents are similar (see respectively Fig. 2b and Fig. 2d). Due to this specific condition, each hydrometeor
type influences equally the computation of pgy-. Nevertheless, due to the large differences between the characteristics of each
hydrometeor type (listed in Section 2.1.1), a large non-homogeneity is induced and leads to low pyy values. Nevertheless, as
such values are usually associated with non-meteorological echoes, these non-realistic simulated values are discarded. These
results show the strong limitation of H p po, for simulating realistic values of pgy .

Considering all case studies (Table 1), it was generally found that realistic simulations of DPOL variables can be obtained
especially in regions where liquid precipitation occur. In presence of solid hydrometeors, the simulation of Zpr, Kpp and
pHv increases in complexity and comparisons with observation show large differences. It also appears that simulated Zp
can be underestimated when only solid hydrometeors are present. The same patterns have been obtained for both S-band and
C-band radars simulations, confirming the results of Augros et al. (2015). These misrepresentations are probably partly due
to hypotheses done in H ppor on the hydrometeor shapes and aspect ratios, on their PSDs and on their dielectric constants.

Indeed, these specified parameters might not be adequate for all meteorological situations. This is especially true for solid hy-
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drometeors, for which the simulation of DPOL variables is particularly complex and dependent on hydrometeor characteristics

simulated by the ICE3 microphysical scheme that does not describe them with enough details.
2.3 Assessment of model errors

In order to describe the uncertainties associated with the simulation of DPOL variables, the impact of changes to three
‘Hppor main input variables has been examined. These variables are the dielectric constant, the hydrometeor aspect ratio
and the hydrometeor oscillation with respect to the horizontal plane. For each type of hydrometeors, these parameters have
been tested independently by applying a perturbation to the default value. For each parameter change, the look-up tables have
been recomputed and a new simulation performed. Six different meteorological cases sampled by S-band radars of the French
ARAMIS network (Tabary, 2007) (Table 1) have been chosen and, coupled with a set of 23 different configurations, it leads to
a total of 138 different simulations. Standard deviations have been computed for each combination of input parameters listed
in Table 2 and for each radar elevation. It can be noticed that the oscillation parameter, for which physically realistic values
described in Ryzhkov et al. (2011) have been used, has not been perturbed for primary ice which is represented by spheres
in ICE3. For the dielectric constant and the hydrometeor aspect ratios, positive and negative relative perturbations have been

considered.

Table 1. Simulated meteorological cases used to assess simulation uncertainties. The two radars of interest are operating in S-band. Hours

are expressed in UTC.

DATE RADAR

19 October 2017 06:00 NIMES

05 February 2018 19:00 NIMES

29 May 2018 16:00 NIMES

09 August 2018 06:00 NIMES
07 October 2018 03:00 COLLOBRIERES
10 October 2018 14:00 COLLOBRIERES

The results are displayed in Fig. 3 for each DPOL variable. The first noticeable information about Z 5 uncertainties are
the two quasi-linear tendencies observed near 0 and 1 dBZ. The first one, around 0.1 dBZ, is induced by the perturbation
of the rain aspect ratios (not shown). It was found that this behaviour comes from thresholds present in the computation
of the backscattering coefficients. The second quasi-linear signal, around 0.9 dBZ, appears to be mostly dependent upon
the perturbation of graupel dielectric constant, without being constrained by a threshold. Overall, the uncertainty on Zz g
appears to be mostly dependent upon the representation of the three types of solid hydrometeors. Indeed, each uncertainty
value higher than 0.2 dBZ in Fig. 3a is associated to a perturbation of a parameter used to represent solid hydrometeors,
especially the dielectric constant. For Zpg, a maximum spread around 0.6 dB is displayed. It also comes from thresholds in
the backscattering coefficient computations for rain aspect ratio. Overall, there is more variability for cases where the simulated

Zppr are below 0.5 dB, which expresses a higher sensitivity of H ppoy, to parameters describing frozen hydrometeors or small
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Table 2. Parameters modified to study uncertainties in the H p por, operator. * LD stands for Linear Decrease and expresses the linear aspect

ratio decrease with the hydrometeor diameter increase, between the two threshold diameter values; MG stands for Maxwell-Garnett.

Default Configuration Perturbed Configurations
Dielectric . o Dielectric . o
Aspect Ratio Oscillation Aspect Ratio Oscillation
constant constant
Rain Debye Brandes 0° Debye + 5% Brandes &+ 20% 5°;10°

Ifd<05mm:1.0;
. Snow default +
Snow MG* if 0.5 > d < 8.0: LD* ; 0° MG* £ 5% 10°; 20°

20%
else : 0.75

Ice MG* 1.0 0° MG* £ 5% Ice default + 20%

Ifd<05mm:1.0;
. Graupel default +
Graupel MG* if 0.5 > d < 10.0: LD* ; 0° MG* £ 5% 10°; 20°

20%
else : 0.85

raindrops. The raindrop aspect ratio parameter explains the major part of the uncertainties appearing on Zpp simulation.
Nevertheless, a small part of these uncertainties can also be explained by the dielectric constant of solid hydrometeors. Very
small uncertainties have been found for pgy simulations. Indeed, no matter the perturbed parameter, the highest uncertainty is
lower than 1.10~3. Concerning K p p, a quasi-linear threshold of sensitivity is displayed. As for the spread distribution of the
other DPOL variables (excepted pgry/), it comes from the rain aspect ratio. This parameter also explains the major part of the
variability of K pp uncertainties.

The results of these sensitivity tests show that Z 7 is sensitive to assumptions made on the simulation of the back-scattering
coefficients for the different hydrometeor types, especially for the solid ones. Indeed, it appears that Z ;; uncertainties are, for
their major part, explained by the hypotheses done on the dielectric constant of solid hydrometeors. Then, this could explain
the underestimations found for simulated Zz; 5 in presence of solid hydrometeors (Fig. 1). On the contrary, the other DPOL
variables appear to be less sensitive to choices made for solid hydrometeors than for liquid ones. Even if DPOL variables
are highly influenced by hydrometeor dielectric constants, they are also known to be dependent upon hydrometeor shapes.
For Zpgr and K pp, uncertainties have been found in the simulations for raindrop aspect ratio perturbations while, for solid
hydrometeors, no uncertainties or very small ones have been found by perturbing their aspect ratios. These results can be
explained by the one moment microphysical scheme ICE3 that characterizes hydrometeors and related processes. Indeed, the
PSDs are deduced from the hydrometeor contents and from constant parameters in order to characterise the generalized Gamma
distributions (see again Table 1 in Caumont et al. (2006)). Concerning the hydrometeor shapes, oblate spheroids appear to be
a good approximation of raindrop shapes while it might be very limiting for solid hydrometeors that exhibit a large diversity
of shapes. For example, Liu (2008) proposed the use of 11 solid particle shapes along with the Discrete Dipole Approximation
(DDA) method in order to compute more realistic scattering. Clearly, the T-matrix method is comparatively limited, as it is

only applicable on spheres and rotationally symmetrical particles.
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Figure 3. Simulation uncertainty for a) Zgu, b) Zpr,c) Kpp and d) pgv. N represents the sample size.

A similar study to the one presented here with S-band radars has been conducted with 11 different meteorological cases, but
with C-band radars (not shown). Comparable results have been obtained, the spread being nevertheless slightly larger for Zp
values higher than 30 dBZ, for Zpp values higher than 1 dB and for the total range of K pp values. These results highlight
the dependence of simulated DPOL variables upon the wavelength. As suggested by the range of values affected by a larger
spread, Mie diffusion occurs for large hydrometeors with C-band radars.

Nevertheless, despite choices done in Hppoy, and, as discussed in section 2.2, the polarimetric observation operator is able
to simulate DPOL variables in the presence of liquid and solid hydrometeors, as shown for instance in Fig. 1d for Zpg. As
discussed at the end of the next section, model errors that have been quantified in this sensitivity study will be considered

for specifying a proxy of the observation error standard deviations, in addition to measurement and representativeness errors.
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Table 3. Meteorological cases selected to study the innovation statistics of DPOL variables. Hours are expressed in UTC.

DATE RADAR
17 January 2018 03:00 TRAPPES
14 February 2018 13:00 TOULOUSE
14 February 2018 13:00 GREZES
26 May 2018 12:00 MOMUY
06 June 2018 00:00 TRAPPES
29 July 2018 07:00 PLABENNEC
10 October 2018 14:00 COLLOBRIERES
24 April 2019 14:00 NANCY
25 April 2019 13:00 TOULOUSE
08 May 2019 04:00 GREZES
10 May 2019 16:00 TOULOUSE
10 May 2019 19:00 TRAPPES

Such values could then be used as diagonal elements of an observation error covariance matrix R necessary for variational DA

studies.

3 Statistics of innovations

As explained previously, the optimality of variational DA requires Gaussianity of errors. For that purpose, innovation
statistics (differences between observation and model counterparts) are examined. An ad-hoc quality control could then be
defined in order to improve Gausiannity. In this study, such statistics have been computed for 12 contrasted meteorological
cases, encompassing convective and stratiform precipitation. Among those cases, only the Collobrieres case has been observed
by a S-band radar, while the others have been sampled by C-band radars (see Table 3). The geographical radar location is given
in Fig. 1 from Tabary (2007).

3.1 Data pre-processing

Several filters are applied on the observations, principally to remove non meteorological echoes and regions of too low
signal-to-noise ratio (SNR). Non-meteorological echoes are filtered using an echo type determination algorithm developed by
Gourley et al. (2007). A second filter removes possible remaining ones by excluding pixels for which py values are lower
than 0.85. The third filter uses a threshold on SNR values. Tabary et al. (2013) explain that polarimetric variables are very
sensitive to noise and, for safety reasons, all pixels with a SNR value lower than 15 dB are discarded. Finally, a median filter is

applied to remove all residual isolated noisy data.
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Figure 4. Filtering effects on Zpr observed by the Trappes radar during a convective event on 2018-06-0600 UTC, for an elevation of 0.4°.

Fig. 4 shows the effects of these filters on Zp g values observed during a convective event that occurred in the Paris area. In
the left panel, ground clutters, characterized by high Zpg values, are present close to the radar. Medium to very strong values
can also be observed along two different azimuths. These patterns are often due to WLAN (Wireless Local Area Network)
interferences. In the right panel, those patterns are not present anymore, thanks to the application of the various filters. One can
notice that other features, located far from the radar, have also been removed. They correspond to data with SNR values lower

than 15 dB.
3.2 Results

In order to quantify the effect of the filters, innovations have been computed on non-filtered and filtered observations. Fig.
5a shows that filtering the Z ;7 observations lead to a small decrease of the bias and standard deviation values, from 3.22
to 3.18 dBZ and from 11.44 to 11.15 dBZ respectively. Concerning Zpr (Fig. 5b), the filtering leads to strong changes in
the innovation statistics. Indeed, the bias decreases from 0.37 to 0.33 dB while the standard deviation drops from 1.26 to
0.55 dB. For Kpp (Fig. 5¢c), filters do not influence innovation statistics. The use of filters mostly affects the negative part
of pgy innovations (Fig. 5d), by removing simulated values close to one. Overall, these results show small modifications of
innovations statistics, except for Zp . For the latter, quality controls appear to be critical and allow to discard about 43% of
spurious Zpp observations. The innovation distributions appear to have a Gaussian shape for Zyp and Zpg while it is not

the case for Kpp and pgy .

14



305

https://doi.org/10.5194/amt-2019-462
Preprint. Discussion started: 16 December 2019

(© Author(s) 2019. CC BY 4.0 License.

Atmospheric
Measurement
Techniques

Discussions

s$s900y uadQ

EGU

a)0 06 ZHH Innovation distributions b)., ZDR Innovation distributions
== Non filtered observations u 3.22 3.18 s Non filtered obse_rvations u 0.37 0.33
e Filtered observations ol 1144 11.15 wu Filtered observations o 1.26 0.55
0.05 N|785167|510744] | N|[557777| 315347
0.8

Frequency
o o
o o
w »

o
o
]

0.01f

Frequency

0.2

g
o
T

o
S
T

0.00 0.0
= -20 0 20 -2 0 2
c) ZHH Innovations (dBZ) d) ZDR Innovations (dB)
10! KDP Innovation distributions 107 RHOHYV Innovation distributions
== Non filtered observations K| 0.22 0.19 = Non filtered observations K| -0.04 [ -0.02
= Filtered observations o 0.26 0.24 e Filtered observations o 0.04 0.03
1000 N|[248398|232271| | 10t N |444957( 2829364
100 4
10" 1
> >
2 g 107 f
S 102} 13
=3 =3
g 9 10° |
'8 '8
10° 1
107+ 1
10} E
104} 1
10-5 L I 10»5 L L L L
-10 -5 0 5 10 -0.4 -0.2 0.0 0.2 0.4

KDP Innovations (°.km ~

"

RHOHV Innovations
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pHV . jrepresents the innovation bias, o the innovation standard deviation and N the sample size

In order to study if these conclusions depend on the hydrometeor phase, innovation statistics have been computed for differ-

ent vertical levels. Fig. 6 represents such distributions over altitude for the studied DPOL variables, when filters are applied.

The Zp g innovation distribution (Fig. 6a) exhibits a positive bias which tends to slightly increase with altitude. It expresses

underestimations done in presence of solid phase hydrometeors that have been already noticed, especially for pristine ice which

is present at high altitudes. One can notice a small asymetry present in the innovation distribution below 4 km. Indeed, in this

part of the atmosphere, a larger number of innovation values are represented in the distribution between 40 to 60 dBZ than in

the symmetrical negative part. Depending upon the meteorological situation, this range of altitudes correspond to the melting
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layer. Large positive innovations in this particular area can highlight melting layer misrepresentations in H ppor, which lead
to Z i underestimations. Same phenomenon is present for other DPOL variables for this range of altitudes, especially for the
differential reflectivity. About Zpr (Fig. 6b), a positive bias indicates an underestimation in the simulations. Nevertheless, for
altitudes higher than 10 km, the bias drops to nearly 0 dBZ values. Concerning K pp (Fig. 6¢), innovations show a small bias
which slightly increases with altitude. Below 7 km, the innovation spread shows underestimations and overestimations done
in simulations while above 7 km, innovations are always positive, indicating systematic K p p underestimations with Hppor,
at those levels, in presence of solid hydrometeors. Contrarily, pgy innovation distributions (Fig. 6d) show a negative bias,

indicating overestimations in the simulations.
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To better understand the behaviour of innovations, separated distributions of simulated and observed values are examined.

Fig. 7 represents the distributions of first-guess and observation distributions for Zzr; and Zpr. Concerning Z gz, first guess

and observation distributions (Figs. 7a and b respectively) look very similar for values above 20 dBZ, which shows the Hppor

capacity to simulate such variable in presence of medium to heavy precipitation. Between 10 dBZ and 20 dBZ, the number of

observations is larger than the simulated ones, which reflects the H p por, underestimation of Zg y in the solid phase already

pointed out. Between 0 and -10 dBZ, the number of simulated values is higher than the observed ones, denoting Hppor

capacity to simulate small values in the presence of very low hydrometeor contents. Simulated values below -10 dBZ, which

are generally close to the radar SNR, cannot be considered for the assimilation and thus have been discarded.
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Concerning Zpg, first guess and observation distributions (Fig. 7d and e respectively) appear to be quite different. For pos-
itive Zp g values, both distributions are similar, especially for small values. Indeed, the higher the Zpr value is, the larger is
the difference between first guess and observation distributions. It comes from the complexity of Zpg simulations, especially
in the presence of solid hydrometeors, where large underestimations occur. In addition, a large fraction near 0 dB in the simu-
lations is not represented in the observations. Finally, the negative Zp g values in the observations have not been simulated by
Hppor- They correspond to hydrometeors with larger vertical axes than horizontal ones. As such hydrometeor shape is not
represented in H ppor, simulated Zp g cannot reach negative values. Physically, such values are usually associated to partic-
ular situations in convective events which can cause preferential vertical orientation of solid hydrometeors, as electrification

processes (Kumjian, 2013a).
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Figure 8. Same as Fig. 7 for K pp (upper panels) and for pry (bottom panels)
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Fig. 8 is similar to Fig. 7, but for K pp and pgy and only in the presence of liquid hydrometeors. K p p first guess distribution
(8a), in comparison to the observations distribution (8b) emphasizes the large underestimations of the simulations. Indeed, the
largest simulated Kpp values is about 2.0°.km ™! while the maximal observed one reaches 7.5°.km~!. This leads to an
innovation distribution which is far from Gaussian, with a strong positive bias (see Fig. 5c). To be able to assimilate this
variable, a strict data selection should be done. Regarding pzry/, most of simulated values are very close to 1.0 (Fig. 8d) while
the observed values range between 0.90 and 1.0. These results reinforce the lack of variability of simulated pgry- values found
in Section 2. It leads to an innovation distribution which is far from Gaussian (see Fig. 5d).

These innovation statistics can also be used to define an approximation of observation standard deviations. Indeed, Errico

et al. (2000) explain that, if innovation PDFs are Normally distributed:

03 = 05 + 05 )
o2 being the variance of the innovation PDFs, 02 and o7 being respectively the observation and the background error variances.
In order to obtain a very first approximation of the observation standard deviation o,, it can be assumed that o, and oy, are

equivalent. In such conditions:

_9d

Values of 0,(Zgn) =7.88 dBZ, 0,(Zpgr) =0.39 dB, 0,(Kpp) = 0.17 °.km~! and o,(pgv) = 0.02 have been found.
Nevertheless, such values must be refined, especially for Kpp and pgy for which Gaussianity have not been found in the

innovation PDFs.
4 Polarimetric variable Jacobians

4.1 Perturbation size determination

As explained in the introduction, the adjoint of the linearized observation operator is required in the formulation of the
gradient of the cost function. H p po 1, being an observation operator which deals with cloud microphysical processes, numerous
highly non-linear processes are present. In this study, the linearized version of Hppor, noted H, has been estimated by his

Jacobians, computed through the use of the finite difference method:

_OH _ H(M +5M) —H(M)
oM SM

H(z) )

‘H representing the non linear version of Hppor, and §M a perturbation of the hydrometeor content M.
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Then, the Jacobian matrix can be estimated as follow:

OHy OH,
OM;n ~ OM;;
(®)
OH: oH,;
OM; ), " OM;y

k representing the model level number and [ the radar elevation and M j, is hydrometeor content (in kg.m~?) associated for
type .

First of all, it is important to evaluate the validity of the linear regime, according to the size of the perturbation M. Duer-
inckx et al. (2015) proposed a method for examining the difference of computations between equivalent positive and negative
perturbations. They explain that, as long the problem stays in a linear regime, this difference should remain close to zero. In
this study, hydrometeor contents can span a wide range of values (several orders of magnitude). As a consequence, the pertur-
bations are chosen as a fraction of the hydrometeor content (instead of a fixed value). The optimal value of perturbation for
the Jacobians has been estimated in the model space. As Hppor computes the DPOL variables independently for each pixel
of the domain before being interpolated on the radar beam, only the diagonal elements of the Jacobian matrix are examined,
since pixels, in model space, are uncorrelated both horizontally and vertically. These computations have been done for several
profiles but, for illustration, only a single profile associated with convective precipitation is presented. Fig. 9 shows how the
optimal rain content fraction 6 M, has been chosen to compute the Jacobians § Zg g /6 M,. . One can notice that the optimal

rain content fraction lies between 10~2g.m =3 and 10~¢g.m 3.
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3 Perturbation size determination
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Figure 9. Difference between 0Z g i /O M, at model level 80 (about 1 km of altitude), estimated with positive and negative perturbations as

a function of the perturbation size d M,

For each hydrometeor type, a single fraction of hydrometeor content has been determined for all DPOL variables, by select-
ing the highest optimal fraction size in common between the four DPOL variables. It was found that the optimal fraction size

3

is 10~°g.m 3 for rain and primary ice contents, while 10~%g.m =3 is more suitable for snow and graupel contents.

4.2 Jacobian profiles in the model space

The information provided by the DPOL variables depends upon the interaction of the different hydrometeors scanned by
the radar beam. A primary step towards understanding DPOL variable Jacobians is to exclude the radar beam effect. In that
case, it is proposed to first consider the diagonal elements of the Jacobian matrix computed in model space. The perturbation

used at each level in the Jacobian computation is applied as follows:

M} = My, + MysM 9)

M representing the perturbed hydrometeor content at level k, M), the hydrometeor contents at level k& and 6 M the optimal
fraction of hydrometeor contents previously chosen. The product M;,d M represents the perturbation applied at level k. Once
the Jacobians are computed, a normalisation by 10% of the hydrometeor profile is applied. This procedure allows a comparison

between Jacobians of a given DPOL variable for different hydrometeor types.
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Figure 10. a) Zx i Jacobians, b) Zpr Jacobians, ¢) Kpp Jacobians and d) pgyv Jacobians, e) represent hydrometeors content profiles,
associated with a convective event which stroke the Hérault and Gard departments on the 2017-10-19-0600 TU. The Jacobians presented

here are normalised by 10 percent of the hydrometeor contents. 23
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Fig. 10 presents the DPOL variables Jacobians computed from a particular profile extracted within a convective cell fore-
casted by AROME-France (Fig. 10e). It shows that an increase in hydrometeor content leads to higher Z 5y Jacobian values
2 (Fig. 10a). It is explained by the fact that reflectivity is proportional to the total hydrometeor cross-section (see Eq. 1). Nev-
ertheless, due to different dielectric constants, Jacobian values are different according to the hydrometeor type. Indeed, Z i
appears to be more sensitive to rain content perturbations while its sensitivity to snow content perturbations is about one order
of magnitude lower. Z 7 7 sensitivities to graupel and pristine ice perturbation is even lower.

Contrary to Z i which mostly depends on the total cross-section and the dielectric factor, other DPOL variables are also
strongly dependent upon hydrometeor characteristics, such as their shape or their orientation. Zp g for instance, as previously
explained, depends upon hydrometeor dielectric constant and shape, as well as the proportion of each type of hydrometeors
with respect to the total hydrometeor content. Fig. 10b shows Zppr Jacobians for different hydrometeor content perturbations.
Raindrops being simulated as oblate spheroids, their larger horizontal cross-section compared to the vertical one leads to
positive Zp i Jacobians for a rain content perturbation (Fig. 10b). For other hydrometeor content perturbations, Jacobian values
can be negative. Such values can be observed for ice content perturbation around 300 hPa and for snow content perturbation
between 400 hPa and 700 hPa. For pristine ice, the negative Jacobian values are due to the increase of spherical particles in the
presence of snow (see Fig. 10e). It causes a small decrease of the proportion of non-spherical particles in the total hydrometeor
content and then, a decrease of Zppr. On the contrary, an increase of snow content in the same part of the atmosphere causes
positive Jacobian values due to the increase of non spherical particles in the total hydrometeor content. From 300 hPa to
approximately 600 hPa, the graupel content is increasing while snow amounts are increasing between 300 hPa and 400h Pa
and then, decreasing (Fig. 10e). Between these pressure levels, the Zp r Jacobian associated with a snow content perturbation
is decreasing and reaches negative values. The graupel dielectric constant being higher than for snow, it becomes predominant
in the Jacobian values. So, even if there is an increase in snow content, which is characterized by flatter particles than graupel,
their presence leads to a reduction of Zppr when it is not the prevailing hydrometeor type. One can notice that the negative
values of 0Zpr/0Mjs between 300 hPa and 600 hPa show vertical oscillations which are likely due to changes in proportions
of the different hydrometeor types. Below 600 hPa, the snow content becomes lower than the graupel one. Since an increase in
snow adds flatter particles, it also leads to an increase in Zppr Jacobian values in this part of the atmosphere. Approximatively
below 700 hPa, rain content is increasing and, because of the large predominance of liquid water dielectric constant over the
one from other hydrometeor types, the Zpr/0M; values drop to zero, even though snow is still present near the melting
layer. Overall, as for Zgp7, the highest Jacobian values are obtained for rain content perturbations, due to the large difference
in dielecric constant between liquid water and solid hydrometeors.

For Kpp, sensitivity is found for rain content perturbations, but the one for solid hydrometeors is negligible (Fig. 10c).
Indeed, a rain content perturbation will lead to an increase in amount of matter crossed by radar pulses and then, to a Kpp
increase. The same results are not obtained for the other hydrometeor contents because of the smaller associated dielectric

constant. Concerning prry, no sensitivity have been found, except for rain content perturbations in the melting layer.

2Jacobian study has been done with linear reflectivity units in order to stay closer to a linear regime than with the use of logarithmic reflectivity units.
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To conclude this section, it has been found that DPOL variables are more sensitive to rain content perturbations than to
other hydrometeors, mainly because of large values of liquid water dielectric constant. Another important information is that
the most sensitive DPOL variable appears to be the horizontal reflectivity Z 7, followed by the differential reflectivity Zpr
and then by the specific differential phase K pp. The co-polar correlation coefficient pgy has very small sensitivities to rain
content perturbations only. Moreover, since strongly non-Gaussian innovation statistics have been noticed in Section 3.2, this

quantity can be hardly used in data assimilation with the current observation operator and cloud microphysical scheme.
4.3 Jacobian matrix in the observation space

As observations are not available on the model grid, the NL observation operator has to compute the model equivalent
in the observation space. To do so, after an horizontal interpolation of the model profiles to the observation location, Hppor
computes the DPOL variables on the model profiles and then, interpolate them over the main lobe of the radar beam (see
Wattrelot et al. (2014)). Contrary to Jacobians computed in the model space, the one obtained in the observation space are
represented by a full Jacobian matrix. It has been computed for the four DPOL variables, but only results for Zx g and Zppr
are shown and discussed here. Comparable conclusions can be drawn for the other variables.

Fig. 11 displays such complete 0Zpgr/OM,., for the profile displayed in Fig. 10, located at 80 km from the radar. The
presence of rain sensitivity between the ground and approximatively 700 hPa is consistent with the hydrometeor content
profiles (Fig. 10e). Nevertheless, it can be seen that the values are now split over the two radar elevations which sample rain.
Indeed, for a rain content perturbation applied at 800 hPa for example, the impact on the Jacobian values is noticed over the
two first radar elevations, with a larger impact on the 0.6° elevation. This behaviour is explained by the Gaussian shape used
to represent the main lobe of the radar beam. In that way, a perturbation applied near of the center of the radar main lobe will
have a more important impact on the Jacobian than if applied on its sides.

An interesting feature is also present on the Zp i Jacobians for a rain content perturbation. Indeed, Zp  is known to increase
when the scanned atmosphere is composed of non spherical particles. However, the Jacobian values around 700 hPa indicate
that a positive rain content perturbation leads to a small decrease of the Zp i value. As rain water content is small, this is actually
caused by the addition of very small rain drops. Indeed, as described in Section 2.1.1, the hydrometeor content is the variable
which influences the particule size distribution through the shape distribution parameter. For small hydrometeor contents, a
majority of small particles are considered as spherical. In consequence, with small rain contents, a positive pertubation will

cause the addition of spherical or nearly spherical particles in the scanned volume and then, a decrease of the Zp g value.
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Figure 11. Zpr Jacobian for a rain content perturbation associated to the AROME hydrometeor profile shown in Fig. 10 located at 80 km

from the radar. The Jacobians are normalised by 10 percent of the hydrometeor content.
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Figure 12. Z 7 Jacobian for a snow content perturbation associated to the AROME hydrometeor profile shown in Fig. 10 artificially located

at (a) 20 km, and at b) 120 km from the radar. The Jacobians are normalised by 10 percent of the hydrometeor content.

Another important parameter to consider when dealing with radar geometry is the distance to the radar. The radar beam
being represented as a cone (see Fig. 3 in Wattrelot et al. (2014)), the width of the beam and the altitude of the sampled
volume are proportional to the distance to the radar. To quantify this effect on the Jacobian values, the convective hydrometeor

450 content profile has been artificially placed at 20 km and 120 km from the radar. Fig. 12 presents such Jacobians for Zp s

with respect to a snow content perturbation. Firstly, no matter the distance to the radar, the positive snow content perturbation
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leads to an increase of Zpyy, related to the increase of the total cross-section. Concerning the radar geometry, two effects
due to the distance to the radar (beam width and altitude) are observed. The first one is the beam width enlargement. For an
elevation of 2.4°, Zy i sensitivity information lies between about 700 hPa and 550 hPa (Fig. 12a) at 20 km from the radar
while, at 120 km, it lies between 480 hPa and 280 hPa. The side effect of radar beam broadening is a sensitivity reduction due
to a repartition of the same amount of information in a larger volume. Indeed, at 20 km, the highest Jacobian value is about
2.1072dBZ.g~ ' .kg x 0.1 M, (Fig. 12a)) while at 120 km, it drops to 8.1073dBZ.g~'.kg x 0.1M, (Fig. 12b). The second
effect of the radar geometry is related to the altitude. Indeed, the farer the observation from the radar is, the higher in the
atmosphere it is. This effect is visible in Fig 12. At 20 km from the radar (Fig 12a), the elevation angle 6.5° is low enough to
get information in the snow region. Nevertheless, at 120 km from the radar and with an elevation angle of 6.5°, the radar beam

is located aloft the snow region.

5 Conclusions

This paper focused on studying operators required for the variational assimilation of polarimetric variables from ground
based weather radars in convective scale NWP models. For that purpose, a radar observation operator Hppor, based on
the T-matrix theory, has been used for the simulation of the following polarimetric variables: horizontal reflectivity Zg s,
differential reflectivity Zpg, specific differential phase Kpp and co-polar correlation coefficient pgry. To simulate these
variables, H p por, uses hydrometeor contents (rain, snow, graupel and pristine ice) from the AROME-France model. It has been
found that more realistic simulations are obtained in the presence of liquid hydrometeors, especially for K pp. To investigate
the complexity of DPOL variable simulations, parameters used to characterise hydrometeors in the T-matrix method have been
perturbed, such as hydrometeor aspect ratios, dielectric constant or oscillation. A weak sensitivity of the simulations to those
parameters has been found, excepted for the dielectric constants of solid hydrometeors in the case of simulated Z 7, and for
the rain aspect ratio for Zpr and Kpp.

Even if polarimetric radars are able to detect fine spatial structures, filters need to be applied in order to remove non-
meteorological data, as well as the possible noise. A positive effect of these filters has been found on innovation statistics for
the four DPOL variables computed for twelve different meteorological cases, with reductions of biases and standard deviations.
Nevertheless, only Z i and Zp g innovations distributions appear to be close to a Gaussian shape. Innovation distributions as
a function of altitude show the complexity of simulations in presence of solid hydrometeors, but also for levels where melting
layer can be encountered.

A linearised version of the polarimetric observation operator has been evaluated by computing its Jacobians with the finite
difference method. The results show that polarimetric variables are more sensitive to rain content perturbations than to solid
hydrometeor ones, especially because of their different dielectric constants. The Jacobian computation also supports the fact
that Z;; appears to be the most sensitive variable to hydrometeor content perturbations, followed by Zpgr. Small Kpp
sensitivity to rain content contents has been found, while no sensitivity has been detected for pgry . Then, radar measurement

geometry has been considered to study DPOL variables sensitivities. Long distances between radar and the profile of interest
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decrease the sensitivity due to the beam broadening, but also induce sensitivities at higher altitudes due to the radar elevation
angle.

The present results show that only some DPOL variables appear to be promising for the initilisation of hydrometeor contents
through variational data assimilation. Among them, the horizontal reflectivity Zy; and the differential reflectivity Zppr are
good candidates. The specific differential phase K pp might also be useful for rain. Nevertheless, the simulation of the polari-
metric variables for certain type of precipitation or meteorological cases remains difficult. The main reason comes from the
ICE3 one-moment microphysical scheme that has been used both in the calibration of the T-Matrix and in the AROME-France
NWP model from which the simulations have been performed. In this microphysical scheme, the generalized gamma distri-
butions, used to describe hydrometeor distributions, have shapes which are only driven by the hydrometeor content. DPOL
variables being very sensitive to hydrometeor size distributions, such microphysical scheme appears to be limiting. Another
limitation is the use of a single particle shape affected by an axis ratio, while DPOL variables are known to be sensitive to
hydrometeor shapes. A two moment microphysical scheme coupled with more complex hydrometeor shapes and scattering
computation method as DDA (Discrete Dipole Approximation) proposed by DeVoe (1964) could lead to large improvements.

Despite the encountered difficulties for Kpp and ppy simulations, assimilation tests should be run for Zy and Zpgr
for all types of hydrometeors, while Kpp could be used for rain content initialisation only. This will be done in a future
study performed in a 1D-Var DA system, in which both non-linear and linear operators presented here will be exploited.
Quantification of errors in Hppoyr, and the study on innovation statistics that have been presented in this paper will also be
very useful for characterizing observation errors. Nevertheless, these values constitute first approximations which need to be
diagnosed with a more objective method, as the one proposed by Desroziers et al. (2005). In that context, the impact of the

DPOL assimilation for analyzing hydrometeor contents, as well as temperature and humidity will be studied in this framework.

Code availability. The polarimetric observation operator is available in the MESO-NH NWP model. It is an non-hydrostatic research model
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